

### **TEACHING PLAN BACHELOR OF EDUCATION IN BUILDING ENGINEERING (BE-BE) STUDY PROGRAM** DEPARTMENT OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITAS NEGERI PADANG

| C                  | OUDSE                                                                                                                                              | CODE                                                                                                             |                                                                          | COURSE CLUSTER                                                                                                                                     | CRE                                      | DITS                                            | SFM                                        | VERSI                              |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------------------|------------------------------------|--|--|
|                    | UUNSE                                                                                                                                              | CODE                                                                                                             |                                                                          | COURSE CLUSTER                                                                                                                                     | ry                                       | tice                                            | SEIVI                                      | ON                                 |  |  |
| Wooden Structure   |                                                                                                                                                    | SIP1.61.4304                                                                                                     |                                                                          |                                                                                                                                                    | 2                                        |                                                 | 4                                          | 1                                  |  |  |
| Lecturer in Charge |                                                                                                                                                    | Annisa Prita Melin                                                                                               |                                                                          |                                                                                                                                                    |                                          |                                                 |                                            |                                    |  |  |
| Remarks            |                                                                                                                                                    | Dean of Facul                                                                                                    | ty of                                                                    | Head of Civil Engineering                                                                                                                          | С                                        | oordina                                         | tor of B                                   | EVE                                |  |  |
|                    |                                                                                                                                                    | Engineerin                                                                                                       | g                                                                        | Department                                                                                                                                         |                                          |                                                 |                                            |                                    |  |  |
|                    |                                                                                                                                                    | <u>Dr. Fahmi Rizal, M</u><br>NIP. 19591204198                                                                    | . <u>Pd., M.T</u><br>5031004                                             | <u>Faisal Ashar, Ph.D.</u><br>NIP. 19750103 200312 1001                                                                                            | Dr:<br>NIP.                              | <u>s. Revia</u><br>196001                       | <u>n Body,</u><br>03 1985                  | <u>MSA.</u><br>03 1003             |  |  |
| Program Learning   | Program Learning Outcomes                                                                                                                          | s (PLO)                                                                                                          |                                                                          |                                                                                                                                                    |                                          |                                                 |                                            |                                    |  |  |
| Outcomes           | By considering input fr                                                                                                                            | om all stake holders                                                                                             | s and the m                                                              | inimum requirements set by ASIIN                                                                                                                   | I, the PI                                | LO's the                                        | at must                                    | be                                 |  |  |
|                    | possessed by graduates                                                                                                                             | from the Bachelor                                                                                                | of Educatio                                                              | on in Building Engineering Study P                                                                                                                 | rogram                                   | are det                                         | ermined                                    | 1 as                               |  |  |
|                    | follows:                                                                                                                                           |                                                                                                                  |                                                                          |                                                                                                                                                    |                                          |                                                 |                                            |                                    |  |  |
|                    | <ol> <li>Master basic know<br/>basis of building<br/>Understanding).</li> <li>1.1. Able to impl<br/>building engi<br/>1.2. Mastering St</li> </ol> | eledge of science (n<br>engineering vocation<br>lement basic conce<br>neering vocational<br>catics, Mechanics, S | nathematics<br>onal educat<br>opts of mat<br>education.<br>Statistics, 7 | s, natural sciences) and other scien<br>tion field for carrying out profes<br>hematics and physics to master s<br>Fechnology Materials, and Engine | ntific di<br>sional<br>ubjects<br>eering | scipline<br>work <i>(1</i><br>matter<br>Drawing | es that f<br>Knowled<br>in the<br>gs as th | form the dge and field of he basic |  |  |

| Г |                                                                                                                      |
|---|----------------------------------------------------------------------------------------------------------------------|
|   | knowledge in the field of building engineering vocational education.                                                 |
|   | 2. Able to identify, formulate, solve, and evaluate various technical problems of buildings as the basic ability for |
|   | teaching in the field of building engineering vocational education (Engineering analysis, investigation and          |
|   | assessment).                                                                                                         |
|   | 2.1. Able to identify, formulate, solve, and evaluate technical problems in the field of geotechnical and            |
|   | transportation as the basic ability for teaching in the field of building engineering vocational education.          |
|   | 2.2. Able to identify, formulate, solve, and evaluate technical problems in the field of structure and               |
|   | construction management as the basic ability for teaching in the field of building engineering vocational            |
|   | education.                                                                                                           |
|   | 2.3. Able to identify, formulate, solve, and evaluate technical problems in the field of hydrology as the basic      |
|   | ability for teaching in the field of building engineering vocational education.                                      |
|   | 3. Possess the ability to design building by taking into account environmental, social, health and work safety       |
|   | issues as the basis for teaching in the field of building engineering vocational education (Engineering design).     |
|   | 3.1. Able to make design programming by taking into account environmental, social, health and work safety            |
|   | issues, in cooperation with various party related.                                                                   |
|   | 3.2. Able to analyze the design by taking into account environmental, social, health and work safety aspects.        |
|   | 3.3 Able to produce design by taking into account environmental social health and work safety aspects                |
|   | 4 Possess social managerial team work and effective communication competencies entrepreneurial character             |
|   | environmental insight and life-long learning habits (Transforable and soft skills)                                   |
|   | 4.1 Possess religious character implemented in personal and professional activities                                  |
|   | 4.1. Possess tengious character implemented in personal and professional activities.                                 |
|   | 4.2. Able to communicate effectively and work in a team                                                              |
|   | 4.5. Able to communicate effectively and work in a team.                                                             |
|   | 4.4. Able to transfer science and technology to the community to improve the quality of life                         |
|   | 4.5. Possess entrepreneurial character                                                                               |
|   | 5. Possess the ability to innovate and adapt to the development of science and technology, and implement it into     |
|   | the learning process of building engineering vocational education field by taking into account non-technical         |
|   | risks that may occur (ethical, ecological, commercial, and industrial impact) (Engineering practice).                |
|   | 5.1. Able to innovate and use information technology (software) in the field of building engineering                 |

|                        |                                                                                              | 1 in Associal increase                              |  |  |  |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                        | vocational education by taking into account the ethical, ecological, commercial and          | a industrial impact.                                |  |  |  |  |  |  |  |  |  |
|                        | 5.2. Able to use information technology-based equipment (hardware) in field of               | building engineering                                |  |  |  |  |  |  |  |  |  |
|                        | vocational education.                                                                        |                                                     |  |  |  |  |  |  |  |  |  |
|                        | 6 Possess a good ability to design implement and evaluate the learning process in            | the field of building                               |  |  |  |  |  |  |  |  |  |
|                        | 0. Tossess a good ability to design, implement and evaluate the rearming process in          | the field of building                               |  |  |  |  |  |  |  |  |  |
|                        | engineering vocational education (Educational design).                                       |                                                     |  |  |  |  |  |  |  |  |  |
|                        | 6.1. Able to design curriculum and learning process of building engineering vocational       | education.                                          |  |  |  |  |  |  |  |  |  |
|                        | 6.2. Able to implement, control, evaluate and improve the quality of learning process        | through research in the                             |  |  |  |  |  |  |  |  |  |
|                        | field of building engineering vocational education.                                          | field of building engineering vocational education. |  |  |  |  |  |  |  |  |  |
|                        | 6.3 Able to develop an effective efficient and attractive learning media in the field of     | of building engineering                             |  |  |  |  |  |  |  |  |  |
|                        | 0.5. Able to develop an effective, efficient, and attractive rearining media in the field of | of building engineering                             |  |  |  |  |  |  |  |  |  |
|                        | vocational education.                                                                        |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
| <b>Course Learning</b> | Course Learning Outcomes (CLO): Concrete Technology                                          |                                                     |  |  |  |  |  |  |  |  |  |
| Outcomes               |                                                                                              |                                                     |  |  |  |  |  |  |  |  |  |
|                        | Course LO                                                                                    | PLO                                                 |  |  |  |  |  |  |  |  |  |
|                        | 1. Able to explain the types of wood and their use                                           | 1.2, 2.4, 4.2, 4.3                                  |  |  |  |  |  |  |  |  |  |
|                        | 2. Able to describes the properties of wood                                                  | 1.2, 2.4, 4.2, 4.3                                  |  |  |  |  |  |  |  |  |  |
|                        | 3. Able to explain the wood structure planning regulations (SNI 7973-2013)                   | 1.1, 1.3, 2.4, 4.2, 4.3                             |  |  |  |  |  |  |  |  |  |
|                        | 4. Able to design capacity of tensile rods and compressive rods on wooden structures         | 1.1, 1.3, 2.1, 2.2, 2.3,                            |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              | 2.4                                                 |  |  |  |  |  |  |  |  |  |
|                        | 5. Able to design the bending rods on wooden structures                                      | 1.1, 1.3, 2.1, 2.2, 2.3,                            |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              | 2.4                                                 |  |  |  |  |  |  |  |  |  |
|                        | 6. Able to describe the connection types and the name of connection                          | 1.1, 1.3, 2.1, 2.2, 2.3,                            |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              | 2.4, 3.1, 3.2                                       |  |  |  |  |  |  |  |  |  |
|                        | 7. Able to plan wooden joints                                                                | 1.1, 1.3, 2.1, 2.2, 2.3,                            |  |  |  |  |  |  |  |  |  |
|                        |                                                                                              | 2.4, 3.1, 3.2                                       |  |  |  |  |  |  |  |  |  |

| Course Description | This course provides knowledge about th columns, beams and joints using planning | te types, classes, properties of wood and planning wooden structural elements such as trusses, g planning principles in accordance with SNI 7973-2013 and other appropriate regulations. |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Literature         | Main:                                                                            |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | 1. SNI 7973-2013. Spesifikasi desain un                                          | tuk konstruksi kayu. Badan Standarisasi Nasional.                                                                                                                                        |  |  |  |  |  |  |  |  |
|                    | 2. Juniman Silalahi, Annisa Prita Melino                                         | la. Struktur Kayu untuk Bangunan Gedung. UNP Compressive. 2018.                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | Supporting:                                                                      |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | 1. Wood Handbook, Stanford Publisher.                                            |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | 2. American Institute of Timber Construct                                        | 2. American Institute of Timber Construction (AITC). 2005. Timber Construction Manual, 5th ed., John Wiley & Sons Inc., Hoboken,                                                         |  |  |  |  |  |  |  |  |
|                    | NJ.                                                                              |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | 3. American Society of Civil Engineering                                         | g, 1996. Mechanical Connections in Wood Structures, ASCE No. 84, 345 East 47 th Street                                                                                                   |  |  |  |  |  |  |  |  |
|                    | New York.                                                                        |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | 4. ASD/LRFD,McGraw-Hill, 2007,Desig                                              | gn of Wood StructuresSixth Edition, Donald E. Breyer, P.E.                                                                                                                               |  |  |  |  |  |  |  |  |
| Teaching Media     | Software:                                                                        | Hardware:                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                    | Office Word, Excell dan Power Point.                                             | Komputer, LCD Projector dan Papan tulis dan perangkatnya                                                                                                                                 |  |  |  |  |  |  |  |  |
| Team Teaching      | Juniman Silalahi, S.Pd., M.Pd.T., Annisa                                         | Prita Melinda, S.T., M.T.                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Assessment         | Mid-Semester Exam, Final Exam, Individ                                           | lual and Group Assignment, Group Presentation                                                                                                                                            |  |  |  |  |  |  |  |  |
| Assessment         | Statika                                                                          |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Prerequisite       |                                                                                  |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |

#### **TEACHING MATERIAL**

| Week | Expected Competency                                                     | Study Material                                                                                     | Teaching Method and<br>Strategy | Assignment                                                                                             | Assessment<br>Criteria/ Indicator                                    | Reference |
|------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|
| (1)  | <b>CPMK-1:</b><br>Able to explain the<br>types of wood and their<br>use | <ol> <li>Wood and its uses</li> <li>The definition of wood<br/>material</li> </ol>                 | Lectures and discussion.        | Make presentation<br>material in power<br>point about the<br>meaning of wood and<br>its classification | Able to explain the<br>meaning of wood<br>and its<br>classification. | M1 dan M2 |
| (2)  | <b>CPMK-1:</b><br>Able to explain the<br>types of wood and their<br>use | <ol> <li>Timber utilization<br/>(advantages and<br/>disadvantages<br/>compared to other</li> </ol> | Lectures and discussion.        | Make a presentation<br>material in a power<br>point about the use of<br>wood and wood types            | Able to explain<br>wood utilization<br>and wood types                | M1 dan M2 |

| Week | Expected Competency   | Study Material           | Teaching Method and<br>Strategy | Assignment            | Assessment<br>Criteria/ Indicator | Reference  |
|------|-----------------------|--------------------------|---------------------------------|-----------------------|-----------------------------------|------------|
|      |                       | materials)               |                                 |                       |                                   |            |
|      |                       | 2. Types of wood         |                                 |                       |                                   |            |
| (3)  | СРМК-2:               | 1. The cross-sectional   | Lectures and discussion.        | Make a summary and    | Able to explain the               | M1, M2 dan |
|      | Able to describes the | structure of wood        |                                 | description of the    | cross-sectional                   | S1         |
|      | properties of wood    | 1.1. Wooden cross        |                                 | material presented in | structure of wood,                |            |
|      |                       | section                  |                                 | the notebook          | wood properties                   |            |
|      |                       | 1.2. Bracelet year       |                                 |                       | and wood                          |            |
|      |                       | 1.3. Wooden cup          |                                 |                       | preservation                      |            |
|      |                       | 1.4. Wood properties     |                                 |                       | methods.                          |            |
|      |                       | 1.3.1. water content     |                                 |                       |                                   |            |
|      |                       | 1.3.2. Density and       |                                 |                       |                                   |            |
|      |                       | density                  |                                 |                       |                                   |            |
|      |                       | 1.3.3. Properties of     |                                 |                       |                                   |            |
|      |                       | wood due to              |                                 |                       |                                   |            |
|      |                       | temperature              |                                 |                       |                                   |            |
|      |                       | 1.3.4. Acoustic          |                                 |                       |                                   |            |
|      |                       | properties of wood       |                                 |                       |                                   |            |
|      |                       | 1.3.5. The electrical    |                                 |                       |                                   |            |
|      |                       | properties of wood       |                                 |                       |                                   |            |
|      |                       | 1.5. Mechanical          |                                 |                       |                                   |            |
|      |                       | properties of wood       |                                 |                       |                                   |            |
|      |                       | 1.5.1.                   |                                 |                       |                                   |            |
|      |                       | Comcompressiveive        |                                 |                       |                                   |            |
|      |                       | strength                 |                                 |                       |                                   |            |
|      |                       | 1.5.2. Tensile Strength  |                                 |                       |                                   |            |
|      |                       | 1.5.3. Flexural strength |                                 |                       |                                   |            |
|      |                       | 1.7. Wood quality        |                                 |                       |                                   |            |
|      |                       | 1.8. Wood Preservation   |                                 |                       |                                   |            |
|      |                       | Method                   |                                 |                       |                                   |            |

| Week | Expected Competency                                                                                          | Study Material                                                                                                                                                                                                                                                     | Teaching Method and<br>Strategy       | Assignment                                                                        | Assessment<br>Criteria/ Indicator                                                                                         | Reference             |
|------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|
| (4)  | <b>CPMK-3:</b><br>Able to explain the<br>wood structure planning<br>regulations (SNI 7973-<br>2013)          | Timber Structure Planning<br>Regulation (SNI 7973-<br>2013)<br>1.1. General objectives of<br>SNI 7973-2013<br>1.2. Terms used<br>1.3. Other regulations used<br>/ supported<br>1.4. Loading and loading<br>combination<br>1.5. Resistance and<br>resistance factor | Lectures and discussion.              | Make a summary and<br>description of the<br>material presented in<br>the notebook | Able to explain<br>timber structure<br>planning<br>regulations and<br>wooden structure<br>design concepts                 | M1, M2, dan<br>S4     |
| (5)  | <b>CPMK-4:</b><br>Able to design capacity<br>of tensile rods and<br>compressive rods on<br>wooden structures | Tensile strength design<br>1.1. Understanding tensile<br>rod<br>1.2. Tensile rod<br>characteristics<br>1.3. Factorized tensile force<br>1.4. Resistance Tensile<br>parallel and perpendicular<br>to the fiber<br>1.5. Tensile rod planning<br>calculations         | Lectures and discussion.<br>Exercises | Calculating the tensile<br>resistance of the<br>tensile rod factor                | Able to calculate<br>explain the<br>concept of tensile<br>resistance design<br>of wood structures                         | M1, M2, S2,<br>dan S3 |
| (6)  | <b>CPMK-4:</b><br>Able to design capacity<br>of tensile rods and<br>compressive rods on<br>wooden structures | Compressive rod planning<br>1.1. Compressive rod<br>planning<br>1.2. Definition of<br>compressive rod<br>1.3. Compressive rod                                                                                                                                      | Lectures and discussion.<br>Exercises | Calculating the<br>compressive resistance<br>of the compressive rod<br>factor     | Able to calculate<br>explaining the<br>design concept of<br>the<br>comcompressiveiv<br>e resistance of<br>wood structures | M1, M2, S2,<br>dan S3 |

| Week | Expected Competency                                                                                          | Study Material                                                                                                                                                                                          | Teaching Method and<br>Strategy       | Assignment                                                                                         | Assessment<br>Criteria/ Indicator                                        | Reference             |
|------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|
|      |                                                                                                              | structural elements<br>1.4. Factorized                                                                                                                                                                  |                                       |                                                                                                    |                                                                          |                       |
|      |                                                                                                              | comcompressive vertice<br>1.5. Compressive rod<br>planning calculations                                                                                                                                 |                                       |                                                                                                    |                                                                          |                       |
| (7)  | <b>CPMK-4:</b><br>Able to design capacity<br>of tensile rods and<br>compressive rods on<br>wooden structures | Compressive rod planning<br>1.1. Column as a press rod<br>1.2. Column slenderness<br>1.3. Column with massive<br>wood<br>1.4. Columns with spaces<br>1.5. Column planning<br>calculations               | Lectures and discussion.<br>Exercises | Calculating the<br>comcompressiveive<br>resistance of the<br>column planning<br>factor             | Able to design<br>compressive<br>columns                                 | M1, M2, S2,<br>dan S3 |
| (8)  |                                                                                                              |                                                                                                                                                                                                         | Mid-Semester Exam                     |                                                                                                    |                                                                          |                       |
| (9)  | <b>CPMK-5:</b><br>Able to design the<br>bending rods on wooden<br>structures                                 | Design of bending rods in<br>wooden structures<br>1.1. Definition of flexible<br>rod<br>1.2. Beams as flexible rods<br>1.3. Notch and form factor                                                       | Lectures and discussion.<br>Exercises | Calculating the<br>flexural strength and<br>bending design of the<br>rods                          | Able to calculate<br>flexural strength in<br>wooden structures           | M1, M2, S2,<br>dan S3 |
| (10) | <b>CPMK-5:</b><br>Able to design the<br>bending rods on wooden<br>structures                                 | Design of bending rods in<br>wooden structures<br>1.1. The bending resistance<br>of composite beams<br>1.2. The bending resistance<br>of arranged beams.<br>1.3. Calculation of bending<br>rod planning | Lectures and discussion.<br>Exercises | Calculating the<br>flexural strength and<br>planning of the<br>bending beam of a<br>composite beam | Able to calculate<br>flexural strength in<br>composite wood<br>structure | M1, M2, S2,<br>dan S3 |

| Week | Expected Competency                                                                      | Study Material                                                                                                                                                       | Teaching Method and<br>Strategy       | Assignment                                                                        | Assessment<br>Criteria/ Indicator                                      | Reference             |
|------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|
| (11) | <b>CPMK-6:</b><br>Able to describe the<br>connection types and the<br>name of connection | <ol> <li>Types of connection</li> <li>Joints on structures</li> <li>Types of joints and<br/>supports</li> <li>Types of fasteners and<br/>connecting tools</li> </ol> | Lectures and discussion.              | Make a summary and<br>description of the<br>material presented in<br>the notebook | Be able to explain<br>the types of joints<br>in wooden<br>structures   | M1, M2, S2,<br>dan S3 |
| (12) | <b>CPMK-7:</b><br>Able to plan wooden<br>joints                                          | Design of wooden joints<br>with nails                                                                                                                                | Lectures and discussion.<br>Exercises | Design a wooden<br>connection with nails                                          | Able to calculate<br>the resistance of<br>wooden joints<br>using nails | M1, M2, S2,<br>dan S3 |
| (13) | <b>CPMK-7:</b><br>Able to plan wooden<br>joints                                          | Design of wooden joints<br>with bolts                                                                                                                                | Lectures and discussion.<br>Exercises | Design a wooden<br>connection with a bolt                                         | Able to calculate<br>the resistance of<br>wooden joints<br>using bolts | M1, M2, S2,<br>dan S3 |
| (14) | <b>CPMK-7:</b><br>Able to plan wooden<br>joints                                          | Design moment joints in wood                                                                                                                                         | Lectures and discussion.<br>Exercises | Design a moment<br>connection in wood                                             | Able to calculate<br>the moment<br>connection<br>resistance in wood    | M1, M2, S2,<br>dan S3 |
| (15) | <b>CPMK-7:</b><br>Able to plan wooden<br>joints                                          | Design of tooth joints in wood                                                                                                                                       | Lectures and discussion.<br>Exercises | Design joints in wood                                                             | Able to calculate<br>the resistance of<br>joints on wood               | M1, M2, S2,<br>dan S3 |
| (16) |                                                                                          |                                                                                                                                                                      | Final Exam                            |                                                                                   |                                                                        |                       |

#### Notes:

# **Correlation between CLO, PLO and Assessment Methods**

|        | Assessment              | Weight |   | CPL-1 |   |   | CP | L-2 |   |   | CP | L-3 |   |   | CPL-4 |   |   | CPL-5 |   |   | CPL-6 | 5 |
|--------|-------------------------|--------|---|-------|---|---|----|-----|---|---|----|-----|---|---|-------|---|---|-------|---|---|-------|---|
|        | Assesment               | (%)    | 1 | 2     | 3 | 1 | 2  | 3   | 4 | 1 | 2  | 3   | 4 | 1 | 2     | 3 | 1 | 2     | 3 | 1 | 2     | 3 |
| CPMK 1 | Tugaa dan               |        |   | V     |   |   |    |     | V |   |    |     |   |   | V     | V |   |       |   |   |       |   |
| CPMK 2 | Tugas dan<br>Drecentesi | 20     |   | V     |   |   |    |     | V |   |    |     |   |   | V     | V |   |       |   |   |       |   |
| СРМК З | FIESEIILASI             |        | V |       | V |   |    |     | V |   |    |     |   |   | V     | V |   |       |   |   |       |   |

| CPMK 4    | UTS 1 dan UTS 2 | 35   | V | V | V | V | V | V |   |   |  |  |  |  |  |  |
|-----------|-----------------|------|---|---|---|---|---|---|---|---|--|--|--|--|--|--|
| CPMK 5    | UAS 1           | 17,5 | V | V | V | V | V | V |   |   |  |  |  |  |  |  |
| СРМК 6    |                 | 17 г | V | V | V | V | V | V | V | V |  |  |  |  |  |  |
| CPMK 7    | UAS Z           | 17,5 | V | V | V | V | V | V | V | V |  |  |  |  |  |  |
| Kehadiran |                 | 10   |   |   |   |   |   |   |   |   |  |  |  |  |  |  |
| TOTAL     |                 | 100  |   |   |   |   |   |   |   |   |  |  |  |  |  |  |

### **Assesment Components**

Mid-Semester Exam: 35%Final Exam: 35%Assignment: 20%Reports: 10%Total: 100 %

### **Description of Assessment Level**

|             | Excellent | Good | Satisfy | Fail |
|-------------|-----------|------|---------|------|
| Description |           |      |         |      |
| Formulation |           |      |         |      |
| Calculation |           |      |         |      |
| Analysis    |           |      |         |      |

### Assessment System

| Score Range | Grade<br>Letter | Grade Point | Notes       | Score Range | Grade Letter | Grade Point | Notes              |
|-------------|-----------------|-------------|-------------|-------------|--------------|-------------|--------------------|
| 85 - 100    | А               | 4.0         | Exceptional | 55 - 59     | С            | 2.0         | Quite Satisfactory |
| 80 - 84     | A-              | 3.6         | Excellent   | 50 - 54     | C-           | 1.6         | Poor               |

| 75 – 79 | B+ | 3.3 | Very Good    | 40 - 49      | D | 1.0 | Very Poor |
|---------|----|-----|--------------|--------------|---|-----|-----------|
| 70 – 74 | В  | 3.0 | Good         | ≤ <b>3</b> 9 | Е | 0.0 | Fail      |
| 65 - 69 | B- | 2.6 | Fairly Good  | -            | Т | -   | Delayed   |
| 60 - 64 | C+ | 2.3 | Satisfactory |              |   |     |           |



# KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: <u>www.ft.unp.ac.id</u>, e-mail: <u>info@ft.unp.ac.id</u>

## **MID-SEMESTER EXAM**

| Course          | : Wooden Structure     |
|-----------------|------------------------|
| Code / Credits  | : SIP1.61.4304         |
| Type of Exam    | : Open SNI             |
| Lecturer        | : Annisa Prita Melinda |
| Time Allocation | : 70 minutes           |
| Maximum Grade   | : 100                  |

| No | Question                                                                                     | Grade |
|----|----------------------------------------------------------------------------------------------|-------|
| 1  | If the tensile rod with the quality code E22 receives a tensile force of 8 kN. Plan the size | 40    |
|    | of the tensile rod. (Assumption: dry air conditions and normal temperature, a                |       |
|    | combination of loading 1.4D)                                                                 |       |
| 2  | A wooden column has a height of 5 m with the type of wood with the quality code E22          | 60    |
|    | With the placement of the end of the clamp-joint column experiences an                       |       |
|    | ultimate comcompressiveive force of 40 kN, wood dimensions 80mm x 100mm, determin            |       |
|    | if the wood is strong enough to withstand the working comcompressiveive for                  |       |
|    | (Assumption: no lateral bracing, dry conditions normal air and temperature, a combination    |       |
|    | of loading 1,4D)                                                                             |       |
|    |                                                                                              |       |



### KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: <u>www.ft.unp.ac.id</u>, e-mail: <u>info@ft.unp.ac.id</u>

### FINAL EXAM

| Course          | : Wooden Structure     |
|-----------------|------------------------|
| Code / Credits  | : SIP1.61.4304         |
| Type of Exam    | : Open SNI             |
| Lecturer        | : Annisa Prita Melinda |
| Time Allocation | : 90 minutes           |
| Maximum Grade   | : 100                  |

#### No Question

Grade

50

1 Consider the following simple block image:



The continuous beam above, receives the ultimate dead load that comes from the dead load weight (including the beam's own weight). The initial plan was to use blocks of size 80/200 with quality E 22. Correction factor CM = Ct = CL = CF = 1. Other unknown factors were determined based on the provisions contained in SNI. Based on the data above, indicate whether the beam meets the moment resistance requirements.

2 Plan a wooden joint like the image below using a nail joint. The wood has a specific 50 gravity of 0.7.

